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Abstract

The present article investigates analytically the First and Second Laws (of Thermodynamics) characteristics of fluid flow and heat transfer
inside a cylindrical annulus. A relative rotational motion presents between the inner and the outer cylinders which induces the flow. Two
different cases are considered: (a) both cylinders are isothermal and kept at different temperatures and (b) the outer cylinder is isoflux
and the inner is isothermal. Governing equations in cylindrical coordinates are simplified and solved to obtain analytical expressions for
dimensionless entropy generation numaT), irreversibility distribution ratio(®), and the Bejan numbeiBe) as a function of flow
governing and geometric parameters. Spatial distribution of velocity and temperature, volumetric and average entropy generation rate, anc
heat transfer irreversibility are presented graphically. The effect of velocity(atithe group paramet&Br/$2), and the Brinkman number
(Br) on the above parameters are tested.
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1. Introduction coefficients in a rotating inner cylinder system with and
without axial flow. Bjorklund and Kaye [5] proposed a

Flow induced by a relative rotating motion or axial move- correlation for heat transfer measurement based on their ex-
ment between cylinders in a concentric arrangement hasperimental data for zero axial flow. Later work of Tachibana
many significant engineering applications. In addition to et al. [6] showed excellent agreement with the correlation
heat transfer situations, the resulting flow is particularly of Bjorklund and Kaye [5]. Aoki et al. [7] predicted the-
applicable to rotating electrical machines, swirl nozzles, oretically the overall heat transfer coefficients limited to a
rotating disks, standard commercial rheometers, and othersmall gap widths for a fluid having Prandtl number equal
chemical and mechanical mixing equipment (see Maron andto 1. Effect of natural convection was studied by Leonardi
Cohen [1]). Since the pioneering work of Taylor [2], numer- et al. [8] for a finite annular gap with differentially heated
ous analytical and experimental works have been performedwalls. El-Shaarawi and Sarhan [9], Gardiner and Sabersky
to predict flow, and thermal fields, stability, heat/mass trans- [10], and Gasley [11] have significant contributions related
fer characteristics, etc., inside the concentric annular spaceto above-mentioned researches. The foregoing discussions
For one fixed and one rotating cylinder, Astill [3] and An- are some of the extensive research efforts concerning flow
dereck et al. [4] presented a developing flow with different and heat transfer between rotating surfaces. For a compre-
flow regimes inside a concentric cylindrical annulus. Heat hensive review, see the paper by Dorfman [12] or Childs and
transfer studies have been primarily stimulated by cooling Long [13].
problems in the design of electric motors of high power  The foregoing discussions are a small part of wide re-
density (see Maron and Cohen [1]). Most experimental in- search efforts related to flow and thermal problems inside an-
vestigations focused on the measurements of heat transfefqular gap with rotating or axially moving cylinder. Although

these works have covered a wide variety problems involving
T Comre . concentric cylinders, these problems have been restricted, in
orresponding author. . . . .
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Nomenclature
Be Bejan number= Ng/Ny Greek symbols
Br Brinkman numbers= Ec x Pr o thermal diffusivity 21
Cy integration constantg,= 1,2, ... r constantsy = 1.2. ...
C, specific heat at constant pressure -kgJ'-K 1 " AVNamic viscosity . ga
v exponential (2.718281) 7 dynsit > Vi flui{j .................... @73
Ec Eckert numbers= (wo.70)?/(C,.AT) f enstty ot t S
s . 11 velocity ratio,= w1.r1/(wo.ro)

k thermal conductivity of fluid . . . .. W™K o angular velocity i
K argument of Lambert function 7 radius ratio - rl/.r.o """"""""""
x; 22::825 gggg:zggz 23222: ];l;;?;“c“on @ ir.revers.ibility distribution ratio= Nr/Ng
Ng entropy generation number; total © d!mens!onless temperatu&e,(_T —To)/AT

' 2 dimensionless temperature differeneeA T/ To
P PreSSUMe. . .ttt et eees Pa v volume of the annular aa 3 )
Pr Prandtl number= n.Cp/k 9ap.. e
q constant heat fluxatwall............. 2 Subscript and superscript
r radial distance ........................... m o value at the inner cylinder
R dimensionless radial distance,r/rg 1 value at the outer cylinder
Sg entropy generationrate .......... 3Kt C critical value
T temperature ... °C 0 average value
u tangential velocity .. .................. a1t T for isothermal boundary condition
U dimensionless tangential velocity,u / (wo.ro) q for isoflux boundary condition

of heat transfer and thermal design is to perform a Seconddifferentially heated isothermal boundary condition. Yilbas
Law (of Thermodynamics) analysis and its design-related [17] assumes a linear velocity profile and neglects the contri-
concept of entropy generation and its minimization (Bejan bution of fluid friction irreversibility to entropy generation.
[14]). This new trend is important and, at the same time, For other geometries, Second Law analyses as well as en-
necessary, if the heat transfer community is to contribute to tropy generation profiles are available in the references by
a viable engineering solution to the energy problems. Drost and Zaworski [18] and Bejan [15,16].

Entropy generation is associated with thermodynamicir-  In this paper, the governing equations in cylindrical
reversibilities, which is common in all types of heat transfer coordinates are simplified and solved using both isothermal
processes. Different sources are responsible for the generaand isoflux boundary conditions assuming a relative angular
tion of entropy, for example, heat transfer down a temper- rotation is present between the cylinders in a concentric
ature gradient, viscous effects, etc. Bejan [15] has focusedarrangement. Subsequently, expressions for dimensionless
on the different mechanisms behind entropy generation in €ntropy generation number, irreversibility distribution ratio,
applied thermal engineering. Generation of entropy destroysand Bejan number are derived.
the available work of a system. Therefore, it makes good
engineering sense to focus on irreversibilities (see Bejan
[14,15]) of heat transfer and fluid flow processes and try 2. Physical model and derivation
to understand the function of related entropy generation ) )
mechanisms. Bejan [16] presented the Second Law aspecg-1- First Law analysis
of heat transfer using different forced convection problem i o
examples. Bejan [16] introduced the concept of entropy ~ Consider the steady flow maintained between two con-
generation number, irreversibility distribution ratio, and pre- Centric cylinders, shown in Fig. 1, by a steady angular
sented spatial distribution profiles of entropy generation for Velocity of one or both cylinders. Let the inner and outer
the example problems. Since then, numerous investigations
have been performed to determine the entropy generation
and irreversibility profiles for different geometric configu- .
rations, flow situations, and thermal boundary conditions. fro I
Most of the works are numerical calculationsduetothenon-\ \ + ) ) [~~~ ~~"~"=~========--
linear nature of flow the governing equations. Very few of
these works consider an analytical approach to a solution. To
For a concentric cylindrical annulus, Yilbas [17] presented
an entropy analysis with a rotating outer cylinder and a Fig. 1. Schematic diagram of the problem under consideration.

o) T or q
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cylinders have radirp and r1, respectively. Steady angu- where Ec is the Eckert number anér is the Prandtl
lar velocities are denoted hyp and w1 for the inner and number. Putting the expression for velocltyinto Eq. (7)
the outer cylinders. Consider no relative axial movement and integrating, the solution to Eq. (7) for dimensionless
between the cylinders. Neglecting the radial velocity compo- temperature is
nent compared to the tangential component of the velocity,

2
the simplified momentum equation in cylindrical coordi- @ — ¢ 4 ¢, In(R) — L =2 ECPr
_ 3+ Caln(R) 5 5
nates is (I1°=1) R
2 EcPr
0%uy | Lous 1o 0 = Ca+ Caln(R) ~ 3= (8)
ar? r or r2 .
whereu, is the tangential velocity component. Neglecting [N the above expression(’s and C4 are constants of
2 is a constant and equal td7(— 1)2/(IT2 — 1). For the
Eﬂ(ra_T) _ _M<3ﬁ _ ”_9> ) isothermal boundary conditio® =0 atR =1 and® =1
rar\ or ar r at R = I1. Using these values, non-dimensional temperature
subjected to the following boundary conditions distribution for the isothermal boundary condition becomes
At r =ro:ug =uo=rowoand? =Ty Or = rsEcPr(1— = )|1- (R) n (R) )
q (3) R2 In(77) | In(17)

Atr=riiug =y =riwrandl’ =Ty or == =+ For the isoflux boundary condition, a constant heat flux
Integrating Eq. (1) with respect to, the solution to the ¢ is applied to the outer cylinder, but the temperature at
momentum equation is the inner cylinder is kept constant as isothermal case. For

Cy this particular case@® =0 at R =1 andd®/dR =1 at
ug =Cir + — 4) R = I1. Using these values, non-dimensional temperature

r

. . . distribution for the isoflux boundary condition becomes
whereC1 andC» are two constants of integration. Applying

boundary conditions described in Eq. (3), the tangential o, _ eopeq_ 1 2In(R) IR 10
velocity ug takes the following form: =13 2 gz | TN (10)
U=ug= rowoirl/r —r/n + rlwlM 5) 2.2. Second Law analysis

ri/ro—ro/r1 ri1/ro—ro/r1

In subsequent calculationsg, is used in place ofy as
tangential velocity. Expressing the ratie/ro as I1 and
u1/ug asi, the dimensionless form of Eq. (5) is

The foundations of our knowledge of entropy production
goes back to Clausius and Kelvin’s studies on the irreversible
aspects of the Second Law of Thermodynamics. Since then
1 T2 — R2 IT. /R2-1 the theories based on these foundations have rapidly de-
72 — 1( R )"' 72 — 1( R ) veloped. However, the entropy production resulting from

5 5 5 temperature differences has remained untreated by classi-

I7“ — R Rc—1 . o
1"1<7> + [‘2< > (6) cal thermodynamics thus motivating many researchers to
R R conduct analysis of fundamental and applied engineering
where R is the dimensionless radial distance which is problems based on Second Law analyses. Review of such
equal tor/ro. Tangential velocity: is made dimensionless  analyses is beyond the scope of this paper; for a compre-
dividing by worg. The constantd™y and I> are equal to hensive review, see Bejan [15]. Based on the Second Law
1/(IT? — 1) and [Tx/(IT? — 1), respectively. In the above of thermodynamics and assumptions already made, the local
expression of velocity, constraints for different parameters volumetric rate of entropy generatiof; (W-m=3-K—1), in
are 1< R< oo, 1< 1T <00, and—o0 < A < 400. For cylindrical coordinates is shown in the following equation
positive A, both cylinders rotate in the same direction and (for detail derivation see Bejan [15])
for negative), they rotate in the opposite directions. For 2 5
; : . k (0T wl 90 /u
a stationary outer cylinder or very large rotation of the g, — _<_) _[r_<_>} (11)
inner cylinder, the second part of Eq. (6) disappears. Before T02 ar Tol or\r

solving the energy equation (Eq. (2)) it is put into the The ahove form of entropy generation shows that the
dimensionless form. Velocity is scaled withworo, radial irreversibility is due to two effects, a conductivie) (effect
distancer is scaled withrg, and dimensionless temperature and a viscous ) effect. Entropy generation rateSd) is

® can be expressed a¥' — To)/AT where Tp is the positive and finite as long as temperature and/or velocity
;‘?{‘E&?}%‘Ztﬁ_r;‘gzﬁg:]esii'?]‘ljgs';’fg‘”enrg;‘genée) tigmperature gradients are present in the medium. According to Bejan
. Q. [14], the dimensionless form &f; is the entropy generation
19 96 U U\2 number (Vs) and which is, by definition, equal to the ratio
R = —EcPr @)

Rar\"9R 9R R of actual entropy generation rat84) to a characteristic

U
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entropy transfer rateSg ¢). According to Bejan [14,16] the  problems both fluid friction and heat transfer have contribu-

characteristic entropy transfer rate is tions to the rate of entropy generation. Expression of entropy
2 K(AT)? generation numberNs) is good for generating spatial en-
Se.c = [‘I_} [ } (12) tropy profile, but it fails to give any idea of whether fluid
k T02 Isothermal VgToz Isoflux friction or heat transfer is the dominating entropy generation

The first square bracketed term is used for isoflux n"!ech.anism.. According to Bejan [14], the irreversibility d!s—
boundary condition and the second square bracketed ternffibution ratio(®) takes care the above problem and which
is used for isothermal boundary condition. Using the same IS €gual to the ratio of entropy generation due to fluid fric-

parameters, which are already used for scaling purpose, thdion (Vr) to heat transfe(Ng). Heat transfer dominates
dimensionless form of Eq. (11) is for 0 < @ < 1 and fluid friction dominates whe@® > 1.

For @ = 1, both heat transfer and fluid friction have the
Ne— 90 2 EcPr Ri u 2—N N 13 same contribution for generating entropy. In many engineer-
S=\9r AR\ R =Ne+ N (13) ing designs and optimization problems (see Bejan [21]),
In the above equation? is the dimensionless temperature the con'Fribution Qf heat transfer entropy on ovgrall ent.rqpy
difference, which is equal t\T/Tp. On the right-hand g.engratlion rate is needed. As_, an alternatwt_e |rreverS|b|.I|ty
side of Eq. (13), the first termi= Ng) accounts for entropy distribution pargmgter, Pao!ettl et al. [20] defme; the Bejan

generation due,to heat transfer in radial direction and the number Be) which is the ratio of entropy generation du_e to
second term(= Ny) is the fluid friction contribution to heat transfer to the total entropy generation. Mathematically

entropy generation. Combining Eqgs. (6), (9), and (13), Bejan number is

2

the entropy generation numbeNsr) for the isothermal g, Ne 1 (16)
boundary condition is Ngr+Nr 14+
2Br I3 In(R) The Bejan number ranges from 0 to 1. Accordindeg =
Nst = [ R3 { - In(H)} 1 is the limit at which the heat transfer irreversibility
) dominates, whileBe = 0 is the opposite limit at which the
_Brrs 01 n 1 irreversibility is dominated by fluid friction effect, arge =
RIn(T) R? RIn(IT) 1/2 is the case in which the heat transfer and fluid friction
MBI [ 32— Iy 2 entropy generation rates are equal. Using Eqgs. (14) and (16)
o [T] (14) and after avoiding detail mathematical operation; the Bejan
number for isothermal boundary condition becomes
Combining Egs. (6), (10), and (13), entropy generation 5 5 2
number(Ngy) for the isoflux boundary condition is Ber = Bng{zm(n/R) — RO RYBrIY 1)
) {R2In(IT)}
Ve [ZBng(iz ~ iz) N E} [, o [2I00T/R) — B2+ R/(Br 1) + 1))
R \R2 I ] R 3 (RZIN(ID)
4Br [ I 1% — I, 4Br N
=) e 2
Q2 [ R2 } (15) + oz (1117 = 1) } (17)
In Egs. (14) and (15Br is the Brinkman number, which Using Egs. (15) and (16), the Bejan number for isoflux

is the product of the EckerE€) and Prandtl numbetPf).

The Brinkman number determines the relative importance
between dissipation effects and fluid conduction effects (IT2 — R?)7?
(see White [19] for details). For each expression, the first Be, = [H +ZBrF3W}

boundary condition becomes

square bracketed term at the right-hand side represents heat (T2~ R) T2

transfer contribution and the second square bracketed term X ” I+ 2Br F3T}

is the fluid friction contribution to entropy generation. Note ReIT

that, for both isothermal and isoflux boundary conditions, 4Br 2 2 -1

fluid friction contribution to the entropy generation are + W(Fln — 1) } (18)

same. Because flow and thermal fields are not coupled
like buoyancy flow and velocity field is independent of
temperature field. 3. Resultsand discussions

2.3. Fluid friction versus heat transfer irreversibility In many practical situations, one of the two cylinders in
the concentric orientation is kept fixéa = 0). This special
Entropy generates in a process or system due to the presease is presented graphically in Fig. 2 where dimensionless
ence of irreversibility (see Bejan [14,15]). In convection velocity profiles are plotted as a function of radial distance
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Fig. 2. Velocity profiles at different.

for radius ratiolT = 5.0 and different velocity ratioga).
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Fig. 3. Temperature distribution for the isothermal boundary condition.

cylinder. The peak location of temperature is also important,

As long as the gap between the cylinders remains smallPecause at this position entropy generation due to radial

(IT =~ 1) relative to their radii, the velocity profile between

temperature gradientd7/9R) is zero. For any value of

the cylinders approaches the idealized linear shear flow?: 7, andBr, the radial location for the peak value of

profile (see Leal [22]). At higherI, velocity profiles

become non-linear due to the simultaneous contributions of

the R and VR terms in Eq. (6). Velocity decreases along

the radial direction and shows a minimum value at the outer

cylinder up tox &~ 0.3846 which can be determined from the
following relation

(19)

The above relation actually determines the value 6£ A¢)

at which velocity gradien{oU/dR) is zero at the outer
cylinder for a particular value of radius rati@7). For

Ac < A < 1, minimum velocity occurs inside the annular
gap and the radial location of the minimum velocity can be
determined from the following relation

(I — )
Romn =\ "mi—1

(20)

temperature can be obtained from the following expression

(I'3Br — 1) 1% 1
I3Br } §j|
(21)
In the above expression, the special function ‘LambertW’
with a general argumentk’ can be evaluated using the
simplified expression given in Eq. (22).

1
Ropa =11 exp[— > Lambert

LambertW K }

0.665{1+ 0.0195InK + 1)} In(K + 1)
+0.04, 0<K <500

In(K —4) — {1—1/In(K)} In{In(K)},
K > 500
Entropy generation numbéNs7) is plotted as a function

of radial distance in Fig. 4 fofT = 2.0, » =0, Br = 1.0,

and for group paramete(Br/£2) ranging 0 to 1. The group

parameter determines the relative importance of viscous

(22)

The above relation is important, because at this radial posi-effects and has significant effect on entropy generation. For

tion, fluid friction contribution to the rate of entropy genera-
tion is zero due to the zero velocity gradi€ftU /9 R).
At the first part of this section, discussion is restricted to

all group parameters, the inner cylinder acts as a strong
concentrator of irreversibility. Entropy generation number
is high in magnitude near the inner cylinder due to the

the isothermal case and the isoflux case will be discussedhigh gradient of temperature and velocifysr then falls
later. Fig. 3 shows the dimensionless temperature profilesexponential like along the radial direction and approaches

as a function of radial distance for=0 and I7T = 5.0
at differentBr (= Ec x Pr). Temperature is equal to O

and 1 at the inner and the outer cylinder, respectively.

For Br > 1, temperature rise inside the fluid is significant
due to the dissipation effect. A marked peak value of

an asymptote near the outer cylindéfsy profiles are
similar in shape and almost parallel to one another whatever
the value of group parameter, but vary in magnitudes. For
constantBr, I7, and A, the magnitude ofNg7r depends
only on the group parametéBr/$2) which is a part of the

temperature occurs inside the annular space, which is higheffluid friction irreversibility (Ny) term in entropy generation
in magnitude than the hot wall temperature. The wall heat number (see Eqg. (14)). So, an increasing or decre&ing

flux actually is into the outer cylinder even though the

just increases or decreases the magnitude oNyeprofile

imposed temperature difference would initially have been without changing its shape. At a particular radial position,
considered to cause wall heat flux to be out of the outer magnitude ofNg7 is higher for higher group parameter.
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Fig. 4. Isothermal entropy generation profiles at different group parameters. Fig. 6. Isothermal Bejan number distribution at different group parameters.
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Fig. 5. Isothermal entropy generation profiles at different velocity ratios. Fig. 7. Isothermal Bejan number distribution at different velocity ratios.

The effect of velocity ratiqi) on entropy generation is Bejan number Ber) is plotted in Fig. 6 as a function
presented in Fig. 5 foff = 2.0, Br = 1.0 andBr/£2 = 1.0. of radial distance fod7 = 2.0, A = 0, Br = 2.0, and group
Value of A is kept between 0 and 1 because of practical parameters 0 to 1. Fdr/£2 = 0, fluid friction contribution
importance. The inner wall still acts as a strong concentratorto entropy generation is zero. The Bejan number is equal
of irreversibility, but now the magnitude oNgy drops to its maximum value(= 1) and independent of radial
significantly at the inner wall for higher due to the lower distance at this group parameter. Bvy 2 > 0, Ber is still
temperature and velocity gradients. With the increase of maximum at the inner wall, but its magnitude drops with the
radial distanceNgsr profiles approaches one another and increase oBr /2. With the increase of radial distandégr
merge at or neaR = 1.70. N7 is inversely proportionalto  falls and approaches zeroRt= 1.55 for all values of group
the R, R?, R® terms (see Eq. (14)). For constdr; Br/ 2, parameters. The zero value B&; is due to the maximum
andx, Ngr falls with increasingr. It is interesting to note  radial temperature gradient at this point and this location can
that a big contribution to entropy generation comes from be determined by Egs. (21) and (22).
the first of the three parts inside the first square bracketed The effect of velocity ratio. on Ber is shown in Fig. 7
term (Wg) of Eq. (14). WhenR approacheél, the first one whereBer is plotted againsr for IT = 2.0, Br = 4.0, and
of these three parts approaches zero. Initially (at By Br/$2 = 1. Heat transfer irreversibility is still maximum at
Nst shows different magnitude for different but with the inner wall for all values ok due to high temperature
the increasingR contribution to the entropy generation and velocity gradient. The magnitude Bér is higher for
from the dominating term decreases resulting a trends oflower value of 1 at the inner wall.Bey then falls along
merging profiles with each other. The magnitude of entropy the radial direction. For all values of, profiles of Ber
generation number is same for rest of the radial distance. intersect with one another & ~ 1.2. Contribution of heat
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Fig. 8. Isothermal Bejan number distribution at different Brinkman num- Fig. 9. Temperature distribution for the isoflux boundary condition.

bers.

transfer irreversibility to entropy generation is the same at
this point for all velocity ratiogi) provided tha. < 1. This
behavior depends on the Brinkman number as long as the
radius ratio(/7) is kept constant. The lowest location of
Ber profile, which represents the zero contribution of heat
transfer irreversibility, shifts towards the outer cylinder for
higher. In Fig. 8, the effect of the Brinkman number on
heat transfer irreversibility is presented flar= 2.0, A =0,
Br/2 = 1.0. ForBr = 1, the Bejan number falls along the
radial direction and no distinct minimum point is observed
inside the annular gap due to the absence of any peak in
temperature distribution. F@r > 1, the Bejan number falls )
rapidly along the radial direction, touches the minimum o= '25' - '1'5' e '75' )
value (= 0) and then increases towards the outer cylinder. ’ ~ R

The minimum location forBey profile shifts towards the
outer cylinder for loweBr. Ber is higher at the higher value
of Br at both the inner and outer cylinders.

For the isoflux boundary condition, dimensionless tem- Similar to Nsr profiles except the slower_falling rate that is
perature profiles are plotted as a function of radial distance in ©PServed for the isoflux boundary condition. The effect of
Fig. 9 for different Brinkman numbers. Temperature profiles Velocity ratio on entropy generation is presented in Fig. 11
in this case are not similar in shape to the isothermal case.andthe p_roﬂles_ are very much S|_m|Iar to the isothermal case.
The temperature gradient is higher near the inner cylinder _The dimensionless volumetric averaged entropy gener-
and this gradient increases wiBr. Temperature increases ation rate(Ng;) can be evaluated using Eq. (23) for the
along the radial direction with the decreasing radial tempera- IS0thermal case

ture gradient. Temperature gradient is inversely proportional NO. — > / Ngr d¥ = - / Ngrrdo dr dz
v v

—

Fig. 10. Isoflux entropy generation profiles at different group parameters.

to R (see Eqg. (10)). So, with increasing, slope of the 5T~

©, — R profile decreases. For a particular radial position,

temperature is higher for higher valueBf. Fig. 10 shows = f(Br,Br/2, 11, 4) (23)
the variation of entropy generation numbe¥sf) with ra- In the above equatior¥ is the volume of the annular
dial distance forlT = 2.0, A = 0, andBr = 1.0 at different space. Average entropy generation rate is a function of
group parameters. The magnitudes of entropy generationgeometric parametef, flow parameter., dimensionless
numbers for both isothermal and isoflux cases are very muchnumbersBr, and group parametdr /2. For a significant
comparable though the temperature is higher for isoflux practical interest, we focus our attention on parameférs
boundary condition. Because the basic equation (Eq. (13))and A. Fig. 12 shows the distribution of average entropy
which is used for generating expression for entropy gener- generation as function of velocity ratio fdr = 2.0 and
ation number deals with gradient of temperature instead of Br = 2.0 at different group parameter. Velocity raiip) is
the magnitude of temperatur®ysy profiles are very much  kept between-1 to 5 for convenience. Both cylinders rotate
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Fig. 11. Isoflux entropy generation profiles at different velocity ratios. Fig. 13. Average entropy generation profiles at different Brinkman numbers.
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Fig. 12. Average entropy generation profiles at different group parameters. Fig. 14. Minimum average entropy generation profiles.

in same direction for positivé and opposite directions for ~ where Ko—K3 are coefficients at different power af and
negativeA. The dashed line represents the Couette flow function of Br, Br/$2, andIT. Eq. (24) has three solutions
situation where. = 0 (fixed outer cylinder). For this range and two of them give imaginary results. The only real
of A, average entropy generation rad{(.) shows a concave  solution isi = I71. Fortunately, prior graphical presentations
shaped distribution pattern. For all group parameters, the (Figs. 12 and 13) satisfy this solutigh = I7) for minimum
magnitude of minimunV¢,. is same(= 0.6937) and which Ng,. Fora = IT, the angular velocity of the outer cylinder
occurs ati = 2.0. Excepti = 2.0, N¢, is higher for (w1) is equal to the inner cylinderwp), i.e., no relative
higher group parametexg,. is plotted against at different angular motion exists between the outer and inner cylinders.
Brinkman numbers in Fig. 13. A similar concave shaped After substitutingh = I7T in Eq. (23), the expression for
pattern is observed and eaBh profile is symmetrical about ~ minimumnN¢,. becomes

the » = 2.0 line. For all values oBr, minimum N¢,. is the 5

same and equal to 0.6937. Except 2.0, magnitude of [NgT]mm = 5
N¢, is higher for higheBr. To locate the minimunivg,., {1 + Hlin(D)]
Eq. (23) is differentiated with respect toresulting a third [NgT]min is only a function of geometric parametar and

(25)

order polynomial as follows independent oBr, Br/2. This can be easily verified from

9N Figs. 12 and 13 where for all values of the group parameter

—SI = 0= f,(Br,Br/$2, 1, 1) and the Brinkman number, the magnitude of minimum
dA entropy generation is same. A similar scenario is observed

= Ko+ K1k + K222 + K31® (24) for the isoflux boundary condition except for the magnitude
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0 —
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